COMPLEXES OF CATEGORIES WITH ABELIAN GROUP STRUCTURE

Mitsuhiro TAKEUCHI
University of Tsukuba, Ibaraki 305, Japan
K.-H. ULBRICH
Mathematisches Seminar, Universität Hamburg, 2000 Hamburg 13, Fed. Rep. Germany

Communicated by A. Heller
Received 16 July 1981

The notion of a complex of categories with abelian group structure arises naturally from deriving the Hattori-Villamayor-Zelinsky sequences [2,9,11], and is a special case of a more general concept defined in [7]. On the other hand it is also possible to derive the Hattori-Villamayor-Zelinsky sequences by the mapping cone method of MacLane [5,6] applied to appropriate group functors as was shown in [8] and for special cases in Hattori [3,4]. However, these group functors are not uniquely determined. In the special cases of Hattori [3,4] there are natural ones at hand, and in the case of a general extension of commutative rings the functors are given by a certain construction [8].

In this paper the mapping cone method and the method of [9] are compared in general and proved to be equivalent under certain commutativity conditions. In part one we show that the mapping cone method can be viewed as a special case of [9]; it corresponds to strict complexes of small categories with strict abelian group structure, and these categories can be identified with homomorphisms of abelian groups. In part two a coherence theorem for complexes of categories with abelian group structure is proved. We can change such a complex into a strict complex of small categories yielding the same cohomology sequence. In part three we prove a coherence theorem for semisimplicial complexes which applies especially to the known examples. This gives implicitly another construction of abelian group functors yielding the Hattori-Villamayor-Zelinsky sequences by the mapping cone method.

For a category with abelian group structure \mathscr{C} we use the additive notation $+: \mathscr{C} \times \mathscr{B} \rightarrow \mathscr{B}, 0: \mathscr{B} \rightarrow \mathscr{B},-: \mathscr{B} \rightarrow \mathscr{C}$ for the structure functors. The structure natural transformations are always denoted by a, c, e, f, i, j and those of a homomorphism $\Gamma: \not \subset \rightarrow$ by $t, \lambda, \kappa[10]$; they are assumed to satisfy the coherence conditions of [10]
(and [9]). We call Γ, or the group structure of $z_{\text {, strict, if the structure natural trans- }}$ formations are identities. By assumption, the morphisms in a category with abelian group structure are isomorphisms.

Section 1

Let 96 denote the category of small categories with strict abelian group structure, and strict homomorphisms. Next let $\mathscr{A} b$ denote the category whose objects are the homomorphisms $f: A \rightarrow B$ of abelian groups; a morphism Γ of $f: A \rightarrow B$ to $f^{\prime}: A^{\prime} \rightarrow B^{\prime}$ in $\mathscr{A} b$ is a pair $\Gamma=\left(\gamma, \gamma^{\prime}\right)$ of group homomorphisms $\gamma: A \rightarrow A^{\prime}$ and $\gamma^{\prime}: B \rightarrow B^{\prime}$ with $f^{\prime} \circ \gamma=\gamma^{\prime} \circ f$. There exists a functor

$$
\mathscr{F}: \mathscr{A} b \rightarrow \mathfrak{U b}
$$

defined as follows. For an $\mathscr{A} b$-object $f: A \rightarrow B$ define the category \mathscr{G}_{f} by $\mathrm{Ob}\left(\mathscr{G}_{f}\right)=B$ and

$$
\mathscr{G}_{f}(u, v)=\{a \in A \mid u=f(a)+v\}, \quad u, v \in B,
$$

where the composition is the addition in A, cf. [1], p. 394. \mathscr{F}_{f} is an $\mathscr{M b}$-object where the structure is defined by the group operations in B and A. An $A b$-morphism $\Gamma=\left(\gamma, \gamma^{\prime}\right): f \rightarrow f^{\prime}$ yields an $\mathscr{U} b$-morphism $\mathscr{G}_{\Gamma}: \mathscr{G}_{f} \rightarrow \mathscr{F}_{f}$, by $\mathscr{G}_{\Gamma}(u)=\gamma^{\prime}(u)$ and $\mathscr{G}_{\Gamma}(a)=\gamma(a)$ for $u \in B, a \in A$.

Theorem 1.1. The functor $\mathscr{F}: \mathscr{A} b \rightarrow \mathfrak{U b}$ is an equivalence.

Proof. First consider the functor $P: \mathscr{U} b \rightarrow \mathscr{U}$ where $P(\mathscr{F}), \mathscr{G} \in O b(\mathscr{K})$, is defined as follows. The objects of $P(\mathscr{G})$ are the pairs (u, a) with $u \in \mathrm{Ob}(\mathscr{C})$ and $a: u \rightarrow 0$ a \mathscr{C}-morphism, and a $P(\mathscr{C})$-morphism $g:(u, a) \rightarrow(v, b)$ is a B-morphism $g: u \rightarrow v$ with $a=b \circ \mathrm{~g} . P(\mathscr{G})$ is an $\mathfrak{U b}$-object where the structure is induced by that of \mathscr{Z}, cf. [9], Proposition 2.2. For any morphism $\Gamma: \mathscr{Z} \rightarrow \mathscr{I}$ in $\mathfrak{A K}, P(\Gamma): P(\mathscr{C}) \rightarrow P(\mathscr{I})$ is defined by $P(\Gamma)(u, a)=(\Gamma(u), \Gamma(a))$ and $P(\Gamma)(g)=\Gamma(g)$. Then we have the commutative diagram

where π denotes the natural projection. Now let $: \mathscr{S}: \mathscr{A} \rightarrow \mathscr{A} b$ be the functor which maps \mathscr{E} to the group homomorphism

$$
\pi: \mathrm{Ob}(P(\mathscr{C})) \rightarrow \mathrm{Ob}(\mathscr{C})
$$

and Γ to $(P(\Gamma), \Gamma)$. There is a natural isomorphism $\eta: \mathscr{G} \circ \mathscr{Z} \rightarrow \mathrm{Id}_{\alpha b}$ defined for an
object $f: A \rightarrow B$ in $\mathscr{A} b$ as $\left(\eta_{f}, \mathrm{id}_{B}\right)$ where

$$
\eta_{f}^{-1}: A \rightarrow \mathrm{Ob}\left(P\left(Y_{f}\right)\right)
$$

maps $a \in A$ to $(f(a), a)$. To define a natural transformation $\bar{\eta}: \mathscr{G} \circ \dot{\mathscr{G}} \rightarrow \mathrm{Id}_{\mathfrak{Y}_{\mathfrak{I}}}$, let $\bar{\eta}_{\hbar}: \mathscr{F}_{\pi} \rightarrow \mathscr{E}$ be the identity on $\mathrm{Ob}(\mathscr{F})$. Any \mathscr{F}_{π}-morphism $\alpha: u \rightarrow v$ has the form $\alpha=(x, g)$ with $x \in \mathrm{Ob}(\mathscr{F})$ and $g: x \rightarrow 0$ a \mathscr{F}-morphism such that

$$
u=\pi(\alpha)+v=x+v .
$$

Let $\bar{\eta}_{f}(\alpha)$ be the morphism $g+0: x+v \rightarrow 0+v$. Then $\bar{\eta}_{\epsilon}: \mathscr{S}_{\pi} \rightarrow \mathscr{G}$ is an isomorphism in $\mathfrak{l b}$, and the theorem is proved.

Consider now an exact sequence of complexes of abelian groups

$$
\begin{equation*}
0 \longrightarrow X \longrightarrow A \xrightarrow{f} B \longrightarrow Y \longrightarrow 0 \tag{1.1}
\end{equation*}
$$

with $X=\operatorname{ker}(f), Y=\operatorname{coker}(f)$, and $A_{n}=B_{n}=0$ for $n<0$. The mapping cone method yields an exact sequence

$$
\begin{equation*}
\cdots \longrightarrow H^{n}(X) \xrightarrow{\alpha} H^{n}(M(f)) \xrightarrow{\beta} H^{n-1}(Y) \xrightarrow{\nu} H^{n+1}(X) \longrightarrow \cdots \tag{1.2}
\end{equation*}
$$

where the complex $M(f)$ is defined by $M(f)=\left\{M_{n}, \partial\right\}$,

$$
M_{n}=A_{n} \times B_{n-1}, \quad \partial(x, y)=(-\partial(x), f(x)+\partial(y))
$$

for $x \in A_{n}, y \in B_{n-1}$, and the homomorphisms are defined by

$$
\begin{aligned}
& \alpha\left(\text { class of } x \in X_{n}\right)=\text { class of }(x, 0), \\
& \beta\left(\text { class of }(x, y) \in M_{n}\right)=\text { class of }-\bar{y}
\end{aligned}
$$

and

$$
\gamma\left(\text { class of } \bar{y} \in Y_{n-1} \text { with } \partial(y)=f(x)\right)=\text { class of } \partial(x),
$$

with $y=y \bmod \operatorname{Im}(f)$. From (1.1) we obtain a sequence

$$
\begin{equation*}
\mathscr{C}_{0} \xrightarrow{\partial} \mathscr{F}_{1} \xrightarrow{\partial} \cdots \mathscr{C}_{n} \xrightarrow{\partial} \mathscr{C}_{n+1} \xrightarrow{\partial} \ldots \tag{1.3}
\end{equation*}
$$

of objects and morphisms in $\mathfrak{H b}$ by $\mathscr{C}_{n}=\mathscr{G}\left(f_{n}\right)$ and $\partial=\mathscr{G}(\partial, \partial)$; then ∂^{2} is equal to the constant functor 0 . Let C_{n} denote the group of isomorphism classes of objects in \mathscr{F}_{n} and let $F_{n}=\operatorname{Aut}\left(0_{n}\right)$. The functors ∂ induce two complexes

$$
\begin{align*}
& \cdots \longrightarrow C_{n-1} \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n+1} \longrightarrow \cdots, \tag{1.4}\\
& \cdots \longrightarrow F_{n-1} \xrightarrow{\partial} F_{n} \xrightarrow{\partial} F_{n+1} \longrightarrow \cdots, \tag{1.5}
\end{align*}
$$

of abelian groups. Their cohomology groups together with certain intermediate groups, $H^{n}(\mathscr{C})$, constitute the cohomology sequence

$$
\begin{equation*}
\cdots \longrightarrow H^{n}(F) \xrightarrow{\alpha} H^{n}(\mathscr{C}) \xrightarrow{\beta} H^{n-1}(C) \xrightarrow{\gamma} H^{n+1}(F) \longrightarrow \cdots \tag{1.6}
\end{equation*}
$$

derived in [9].

Theorem 1.2. The cohomology sequences (1.2) and (1.6) are isomorphic.
Proof. From the definition of $\zeta\left(f_{n}\right)$ we have $C_{n}=\operatorname{coker}\left(f_{n}\right)=Y_{n}$ and the complex (1.4) coincides with Y. Furthermore, we can identify X_{n} with F_{n} and X with (1.5). So we have only to construct homomorphisms

$$
\theta: H^{n}(M(f)) \rightarrow H^{n}(\mathscr{B})
$$

with $\theta \circ \alpha=\alpha$ and $\theta \circ \beta=\beta$. If (a, v) in $M_{n}=A_{n} \times B_{n-1}$ is a cocycle, then

$$
-\partial(a)=0 \quad \text { and } \quad f_{n}(a)+\partial(v)=0
$$

Thus we have a $T\left(f_{n}\right)$-morphism $a: \partial(-v) \rightarrow 0$, and $(-v, a)$ is an object of the category p^{n-1} defined in [9], p. 131. The condition $\partial(\alpha)=0$ says that

$$
\partial(a): \partial^{2}(-v) \rightarrow \partial(0)
$$

equals the identity of $\partial^{2}(-v)=\partial(0)=0$. Therefore we have a homomorphism $Z^{n}(M(f)) \rightarrow H^{n}(\mathscr{f}),(a, v) \rightarrow$ class of $(-v, a)$, which induces the desired θ as is easily seen.

The statement of Theorem 1.2 is also true if we start with an arbitrary sequence (1.3) in $\mathfrak{N b}$ with $\partial^{2}=0$ and define (1.1) by setting $f_{n}: A_{n} \rightarrow B_{n}$ equal to $\mathscr{G}\left(\mathscr{B}_{n}\right)$.

Remark 1.3. There is another proof of Theorem 1.2 by using the concept of $\mathrm{V}-\mathrm{Z}$ systems [8]. Let

resp.

be the $\mathrm{V}-\mathrm{Z}$ system associated with (1.1), resp. (1.3). In view of [8], Proposition 2.16, we have only to show both $\mathrm{V}-\mathrm{Z}$ systems are isomorphic to each other. As shown above, the complexes X and Y are identified with F and C respectively. Recall that P^{n} is the group of isomorphism classes of objects in \mathscr{P}^{n}, where (P, g) is an object in \mathscr{P}^{n} if and only if $(P, g) \in B_{n-1} \times A_{n}$ with $\partial(P)=f_{n}(g)$. Two objects (P, g) and $\left(P^{\prime}, g^{\prime}\right)$ in \mathscr{P}^{n} are isomorphic if and only if there is an element c in A_{n-1} with $(P, g)=\left(P^{\prime}, g^{\prime}\right)+\left(f_{n-1}(c), \partial(c)\right)$. Thus P^{n} is precisely J_{n} the center of the square

It is easy to check that the above identifications give rise to the desired isomorphisms of $\mathrm{V}-\mathrm{Z}$ systems.

Section 2

Consider a sequence of homomorphisms of categories with abelian group structure

$$
\begin{equation*}
\mathscr{B}_{0} \xrightarrow{\partial} \mathscr{B}_{1} \xrightarrow{\partial} \cdots \mathscr{B}_{n} \xrightarrow{\partial} \mathscr{B}_{n+1} \xrightarrow{\partial} \cdots \tag{2.1}
\end{equation*}
$$

and suppose we have natural transformations

$$
\chi: \partial \circ \partial \rightarrow 0
$$

such that for all objects P, Q in \mathscr{F}_{n} the diagrams (D.1) and (D.2)

are commutative. As a consequence of [10], part II, $\chi: \partial^{2} \rightarrow 0$ is a morphism of homomorphisms in the terminology of [9]. We shall prove in this section:

Theorem 2.1. There exists a sequence of objects and morphisms

$$
\dot{\mathscr{B}}_{0} \xrightarrow{\partial} \dot{\mathscr{B}}_{1} \xrightarrow{\partial} \ldots \dot{\mathscr{B}}_{n} \xrightarrow{\partial} \dot{\mathscr{B}}_{n+1} \xrightarrow{\partial} \ldots
$$

in $\mathfrak{U b}$ with $\partial^{2}=0$ whose derived cohomology sequence is isomorphic to that of (2.1).
The crucial point is to prove that the sequence (2.1) is coherent in a certain sense. To this end, we choose a system $\left(I_{n}\right)_{n \geq 0}$ of nonempty disjoint sets I_{n}, and arbitrary maps

$$
\varepsilon: I_{n} \rightarrow \mathrm{Ob}\left(\mathscr{B}_{n}\right), \quad n \geq 0
$$

Define a system $\left(F\left(I_{n}\right)\right)_{n \geq 0}$ of sets of words over the alphabet

$$
\begin{equation*}
\{(,),+,-, \partial\} \cup \bigcup_{n}\left(I_{n} \cup\left\{0_{n}\right\}\right) \quad \text { (disjoint) } \tag{2.2}
\end{equation*}
$$

inductively by:
(1) $I_{n} \subseteq F\left(I_{n}\right), 0_{n} \in F\left(I_{n}\right)$,
(2) $v \in F\left(I_{n}\right) \Rightarrow \partial(v) \in F\left(I_{n+1}\right)$,
(3) $u, v \in F\left(I_{n}\right)=(u+v),-v \in F\left(I_{n}\right)$.
$F\left(I_{0}\right)$ is a free group-like set [8] over I_{0} and $F\left(I_{n+1}\right)$ is a free group-like set over $I_{n+1} \cup \partial\left(F\left(I_{n}\right)\right)$. The maps $\varepsilon: I_{n} \rightarrow \mathrm{Ob}\left(\mathscr{C}_{n}\right)$ can be uniquely extended to maps of grouplike sets

$$
\begin{equation*}
\varepsilon: F\left(I_{n}\right) \rightarrow \mathrm{Ob}\left(\mathscr{C}_{n}\right) \tag{2.3}
\end{equation*}
$$

in such a way that $\varepsilon(\partial(u))=\partial(\varepsilon(u))$ holds for all $u \in F\left(I_{n}\right)$. Now let $\overline{\mathscr{B}}_{n}$ be the category defined by

$$
\mathrm{Ob}\left(\tilde{\mathscr{C}}_{n}\right)=F\left(I_{n}\right), \quad \dot{\mathscr{C}}_{n}(u, v)=\mathscr{C}_{n}(\varepsilon(u), \varepsilon(v))
$$

$u, v \in F\left(I_{n}\right)$, with composition induced by that of \mathscr{L}_{n}. There are natural extensions of (2.3) to fully faithful functors

$$
\varepsilon: \overline{\mathscr{B}}_{n} \rightarrow \mathscr{C}_{n}
$$

Moreover, \mathscr{C}_{n} induces an abelian group structure on $\overline{\mathscr{B}}_{n}$, and ε becomes a strict homomorphism. By construction, we have a functor

$$
\partial: \hat{\mathscr{B}}_{n} \rightarrow \hat{\mathscr{B}}_{n+1}
$$

which maps $u \in \mathrm{Ob}\left(\overline{\mathscr{F}}_{n}\right)$ to $\partial(u)$ and a $\overline{\mathscr{G}}_{n}$-morphism $g: u \rightarrow v$ to $\partial(g): \partial(u) \rightarrow \partial(v)$. It is a homomorphism by means of the natural transformation t of $\partial: \mathscr{C}_{n} \rightarrow \mathscr{C}_{n+1}$, and we have the commutative diagram (2.4).

Define now subcategories \mathscr{X}_{n} of \mathscr{E}_{n} with $\operatorname{Ob}\left(\mathscr{X}_{n}\right)=\operatorname{Ob}\left(\mathscr{E}_{n}\right)$ inductively by:
(1) $a_{u, \nu, w}, c_{u, v}, e_{v}, i_{v}, \mathrm{id}_{v} \in \mathscr{X}_{n}$ for $u, v, w \in \mathrm{Ob}\left(\dot{F}_{n}\right)$,
(2) $t_{u, v}: \partial(u+v) \rightarrow \partial(u)+\partial(v)$ in \mathscr{X}_{n+1} for $u, v \in \mathrm{Ob}\left(\dot{\mathscr{G}}_{n}\right)$,
(3) $\chi_{v}: \partial^{2}(v) \rightarrow 0$ in \mathscr{K}_{n+2} for $v \in \mathrm{Ob}\left(\tilde{B}_{n}\right)$,
(4) $g \in \mathscr{K}_{n} \Rightarrow \partial(g) \in \mathscr{X}_{n+1}$,
(5) $g, h \in \mathscr{X}_{n} \Rightarrow g+h,-g, g \circ h$ (if defined), $g^{-1} \in \mathscr{X}_{n}$.

Theorem 2.2. The categories $\mathscr{K}_{n}, n \geq 0$, are atomic (i.e. for every two objects u, v in \mathscr{X}_{n}, there is at most one \mathscr{X}_{n}-morphism $u \rightarrow v$).

Proof. By (1) and (5) above, \mathscr{X}_{n} is a subcategory with abelian group structure and by (2) and (4), $\partial: \mathscr{\mathscr { F }}_{n} \rightarrow \dot{\mathscr{B}}_{n+1}$ can be restricted to a homomorphism $\partial: \mathscr{X}_{n} \rightarrow \mathscr{X}_{n+1}$. It is now convenient, using an idea of M . Laplaza, to change the 'monoidal' arrows of \mathscr{X}_{n} into identities. For this we define the subcategories $\mathscr{\mathscr { X }}_{n}$ of \mathscr{X}_{n} with $\mathrm{Ob}\left(\overline{\mathscr{X}}_{n}\right)=\mathrm{Ob}\left(\mathscr{X}_{n}\right)$ inductively by:
(1) $a_{u, v, w}, e_{v}, f_{v}$, id $_{v} \in \mathscr{\mathscr { X }}_{n}$ for $u, v, w \in \mathrm{Ob}\left(\mathscr{\mathscr { H }}_{n}\right)$,
(2) $g \in \bar{X}_{n} \Rightarrow \partial(g) \in \dot{X}_{n+1}$,
(3) $g, h \in \dot{\mathscr{X}}_{n} \Rightarrow g+h,-g, g \circ h$ (if defined), $g^{-1} \in \dot{x}_{n}$.

Applying the theorem on the coherence of a, e, f, it is not difficult to see that \bar{X}_{n} is atomic. Thus we can define the factor category

$$
\dot{\mathscr{X}}_{n}=\mathscr{K}_{n} / \overline{\mathscr{X}}_{n},
$$

cf. $[8,10] . \mathscr{X}_{n}$ induces an abelian group structure on $\dot{\mathscr{K}}_{n}$, which is now strictly associative and unital. $\mathrm{Ob}\left(\dot{\mathscr{X}}_{n}\right)$ may be identified with $W_{n} \cup\left\{0_{n}\right\}$, where the system $\left(W_{n}\right)_{n \geqslant 0}$ of sets of words over (2.2) is defined by:
(1) $I_{n} \subseteq W_{n},-0_{n} \in W_{n}, \partial\left(0_{n}\right) \in W_{n+1}$,
(2) $v \in W_{n} \Rightarrow \partial(v) \in W_{n+1}$,
(3) $u, v \in W_{n} \Rightarrow u+v,-(v) \in W_{n}$.

It suffices to show that $\dot{\mathscr{X}}_{n}$ is atomic because the projection $\mathscr{X}_{n} \rightarrow \dot{\mathscr{X}}_{n}$ is an equivalence. Since $\partial: \mathscr{X}_{n} \rightarrow \mathscr{X}_{n+1}$ maps \bar{X}_{n} into \mathscr{X}_{n+1} we obtain the induced sequence

$$
\dot{\mathscr{X}}_{0} \xrightarrow{\partial} \dot{\mathscr{X}}_{1} \xrightarrow{\partial} \cdots \dot{\mathscr{X}}_{n} \xrightarrow{\partial} \dot{\mathscr{X}}_{n+1} \xrightarrow{\partial} \cdots .
$$

For this we have the natural transformation $\chi: \partial^{2} \rightarrow 0, \chi=\chi \bmod \overline{\mathscr{X}}_{n}$, and (D.1), (D.2) are commutative for the objects of $\dot{\mathscr{X}}_{n}$. In the following we use the $\dot{\mathscr{X}}_{n}$-morphisms

$$
\varrho_{v}:-(-v) \rightarrow v, \quad k_{u, v}:-(u+v) \rightarrow-v+(-u)
$$

as defined in [10]. Let T_{n} denote the set of $\dot{\mathscr{X}}_{n}$-morphisms

$$
c_{u, v}, i_{v}, j_{v}, \varrho_{v}, k_{u, v}, t_{x, y}, \lambda, \kappa_{x}, \chi_{z}, \mathrm{id}_{v}
$$

with $u, v \in \mathrm{Ob}\left(\dot{\mathscr{X}}_{n}\right), x, y \in \mathrm{Ob}\left(\dot{\mathscr{X}}_{n-1}\right), z \in \mathrm{Ob}\left(\dot{\mathscr{X}}_{n-2}\right)$ subject to the following restrictions:
(1) for $c_{u, v}$, we assume u, v are in $X_{n} \cup\left(-X_{n}\right), u \neq v, u \neq-v,-u \neq v$, with $X_{n}=I_{n} \cup \partial\left(I_{n-1}\right)$,
(2) for $k_{u, v}$ and $t_{x, y}$ we assume $x, y, u, v \neq 0$.

Of course \mathscr{X}_{n} and I_{n} are meant to be empty for $n<0$. Note in (1) that a $\dot{\mathscr{X}}_{n}$-morphism $c: \partial^{2}(z)+v \rightarrow v+\partial^{2}(z)$ is equal to the composition

$$
\partial^{2}(z)+v \xrightarrow{\chi+i d} v \xrightarrow{i d+\chi^{-1}} v+\partial^{2}(z) .
$$

For $g \in \operatorname{Mor}\left(\dot{\mathscr{K}}_{n}\right)$ define the set $E(g) \subseteq \operatorname{Mor}\left(\dot{\mathscr{X}}_{n}\right)$ of expansions of g as in [10] by:
(1) $g,-g,-(-g), \ldots \in E(g)$,
(2) $h \in E(g) \Rightarrow h+\mathrm{id}_{u}, \mathrm{id}_{u}+h \in E(g)$ for $u \in \mathrm{Ob}\left(\dot{x}_{n}\right)$. Then define

$$
\begin{equation*}
E\left(T_{n}\right)=\bigcup_{g \in T_{n}} E(g) \quad \text { and } \quad E\left(T_{n}^{-1}\right)=\bigcup_{g \subseteq I_{n}} E\left(g^{-1}\right) \tag{2.5}
\end{equation*}
$$

Our next aim is to show, that each morphism in $\dot{\mathscr{K}}_{n}$ can be written as a composition of elements of $E\left(T_{n}\right) \cup E\left(T_{n}^{-1}\right)$.

First observe that any $\dot{\mathscr{X}}_{n}$-morphism of the form $\partial^{2}(g): \partial^{2}(u) \rightarrow \partial^{2}(v)$ with $g: u \rightarrow 0$ in $\dot{\mathscr{X}}_{n-2}$ may be written as

$$
\partial^{2}(u) \xrightarrow{\chi} 0 \xrightarrow{x^{-1}} \partial^{2}(v),
$$

and is clearly contained in the set \mathscr{L}_{n} of all compositions of elements of $E\left(T_{n}\right) \cup E\left(T_{n}^{-1}\right)$. From this one can deduce, cf. [10], that each morphism in \dot{X}_{n} is a composition of elements of $E\left(\bar{T}_{n}\right) \cup E\left(\bar{T}_{n}^{-1}\right)$ with

$$
\bar{T}_{n}=T_{n} \cup \partial\left(\tilde{T}_{n-1}\right),
$$

\tilde{T}_{n-1} the set of the $\dot{\mathscr{X}}_{n-1}$-morphisms $t_{x, y}, \lambda, \kappa_{x}, \chi_{z}$ in T_{n-1}. But $\partial\left(t_{x, y}\right)$ and $\partial\left(\chi_{z}\right)$ are in \mathscr{L}_{n} since (D.1) and (D.2) are commutative. Moreover, (D.3) and (D.4) are commutative as can be seen as follows.

We can view ∂^{2} as a homomorphism where $t\left(\partial^{2}\right)_{\mu, \nu}$ is defined as

$$
\left.\partial^{2}(u+v) \xrightarrow{\partial(t)} \partial(\partial(u))+\partial(v)\right) \xrightarrow{t} \partial^{2}(u)+\partial^{2}(v) .
$$

From this definition one can deduce

$$
\lambda\left(\partial^{2}\right)=\lambda \circ \partial(\lambda) \text { and } \kappa\left(\partial^{2}\right)=\kappa \circ \partial(\kappa) .
$$

Observe now that the commutativity of (D.2) says that $\chi: \partial^{2} \rightarrow 0$ is a coherent natural transformation. Thus (D.3) and (D.4) must be commutative because they correspond to (D.10) and (D.11) in [10], part II. But this means that $\partial(\lambda)$ and $\partial(\kappa)$ are in \mathscr{L}_{n} and $\mathscr{L}_{n}=\operatorname{Mor}\left(\dot{\mathscr{X}}_{n}\right)$ is proved.

Now choose on each I_{n} a linear ordering < and extend it to a linear ordering on the disjoint union $\bigcup_{n} I_{n}$ by defining $u<v$ for $u \in I_{m}, v \in I_{n}$ if $m<n$. Using such an ordering we can define maps

$$
r g_{n}: \mathrm{Ob}\left(\dot{\mathscr{x}}_{n}\right) \rightarrow \mathbb{N}
$$

as in [10] with the following properties:
(2.6) if a \dot{K}_{n}-morphism $h: u \rightarrow v$ is an expansion of an element $g \neq c_{x, y}$ of T_{n}, then

$$
r g_{n}(u) \geq r g_{n}(u),
$$

and equality holds if and only if $g=i d$,
(2.7) if $h: u \rightarrow v$ is an expansion of $c_{x_{1}, y} \in T_{n}$ then $\operatorname{rg}_{n}(u)>\operatorname{rg}_{n}(v)$ if and only if $r g_{n}(x)>r g_{n}(y)$,
(2.8) if

are elements of $E\left(T_{n}\right)$ with $r g_{n}(u)<r g_{n}(u)$ and $r g_{n}(w)<r g_{n}(u)$, then $h_{1} \circ h_{0}^{-1}$ can be written as

$$
v \xrightarrow{g_{0}} u_{1} \xrightarrow{g_{1}} \cdots u_{m} \xrightarrow{g_{m}} w
$$

with $g_{\mu} \in E\left(T_{n}\right) \cup E\left(T_{n}^{-1}\right)$ and $r g_{n}\left(u_{\mu}\right)<r g_{n}(u), \mu=1, \ldots, m$.
In (2.8) we can restrict our attention to the case that h_{0} or h_{1} is an expansion of χ because all other cases have already been considered in [10]. But this case is trivial as is easily checked.

Now let $h=h_{m} \circ h_{m-1} \circ \cdots \circ h_{1}$ be an automorphism in $\dot{\mathscr{X}}_{n}$ with $h_{\mu}: v_{\mu} \rightarrow v_{\mu+1}$ in $E\left(T_{n}\right) \cup E\left(T_{n}^{-1}\right), \mu=1, \ldots, m$. Because of $\operatorname{Aut}(u) \cong \operatorname{Aut}\left(0_{n}\right)$ for all $u \in \operatorname{Ob}\left(\dot{\mathscr{X}}_{n}\right)$ we may suppose that h is an automorphism of the neutral object 0_{n}. Then it is clear from (2.8) that $h=$ id follows by induction on $r g_{n}\left(h, h_{1}, \ldots, h_{m}\right)=\max _{\mu}\left(r g_{n}\left(v_{\mu}\right)\right) . \quad \square$

Now we are ready to prove Theorem 2.1. We choose I_{n} and $\varepsilon: I_{n} \rightarrow \mathrm{Ob}\left(\mathscr{P}_{n}\right)$ in such a way that each object of \mathscr{E}_{n} is isomorphic to an object in $\varepsilon\left(F\left(I_{n}\right)\right)$. The strict homomorphism $\varepsilon: \mathscr{F}_{n} \rightarrow \mathscr{F}_{n}$ is then an equivalence and the commutative diagram (2.4) induces an isomorphism between the derived cohomology sequences. Knowing that $\mathscr{\varkappa}_{n}$ is atomic, we can proceed to

$$
\dot{\mathscr{E}}_{n}=\dot{\mathscr{F}}_{n} / \mathscr{X}_{n}, \quad n \geq 0
$$

which are objects in $\mathcal{N G}$. The homomorphism $\partial: \bar{S}_{n} \rightarrow \bar{S}_{n+1}$ induces a strict homo-
morphism $\partial: \dot{\partial}_{n} \rightarrow \dot{F}_{n+1}$ and we get $\partial^{2}=0$ since χ is in \mathscr{K}_{n+2}. We have the commutative diagram (2.9) where π denotes the projection.

But the π 's are equivalences and strict homomorphisms. Thus the derived cohomology sequences are isomorphic and the theorem is proved.

Section 3

Let there be given a semisimplicial complex

$$
\begin{equation*}
\mathscr{C}_{0} \longrightarrow \mathscr{B}_{1} \Longrightarrow \mathscr{B}_{2} \Longrightarrow \cdots \tag{3.1}
\end{equation*}
$$

of categories with abelian group structure \mathscr{C}_{n}; this means we have homomorphisms

$$
d_{0}, d_{1}, \ldots, d_{n}: \mathscr{C}_{n} \rightarrow \mathscr{C}_{n+1}, \quad n \geq 0
$$

and natural transformations

$$
\alpha_{i, j}: d_{i} \circ d_{j} \rightarrow d_{j+1} \circ d_{i}, \quad i \leq j
$$

Suppose the $\alpha=\alpha_{i, j}$ are coherent in the sense of [10] where we view the composition $d_{i} d_{j}$ as a homomorphism by $t \circ d_{i}(t)$. Furthermore, assume that for $i \leq j \leq k$ the diagram (3.2) is commutative.

In the following we prove a coherence theorem for the above complex which enables us to construct a complex (2.1) satisfying (D.1) and (D.2) by the usual formula for the coboundary operator ∂.

As before, choose a system $\left(I_{n}\right)_{n \geq 0}$ of non-empty disjoint sets I_{n} and maps $\varepsilon: I_{n} \rightarrow \mathrm{Ob}\left(\mathscr{C}_{n}\right)$. Let the sets $F\left(I_{n}\right)$ of words over the alphabet

$$
\begin{equation*}
\left\{(,),+,-, d_{0}, d_{1}, \ldots\right\} \cup \bigcup_{n}\left(I_{n} \cup\left\{0_{n}\right\}\right) \quad \text { (disjoint) } \tag{3.3}
\end{equation*}
$$

be defined by:
(1) $I_{n} \subseteq F\left(I_{n}\right), 0_{n} \in F\left(I_{n}\right)$,
(2) $v \in F\left(I_{n}\right) \Rightarrow \boldsymbol{d}_{0}(v), \ldots, \boldsymbol{d}_{n}(v) \in F\left(I_{n+1}\right)$,
(3) $u, v \in F\left(I_{n}\right)=(u+v),-v \in F\left(I_{n}\right)$.

There are unique extensions of $\varepsilon: I_{n} \rightarrow \mathrm{Ob}\left(\%_{n}\right)$ to maps of group-like sets $\varepsilon: F\left(I_{n}\right) \rightarrow \mathrm{Ob}\left(\mathscr{C}_{n}\right)$ with

$$
\varepsilon\left(d_{i}(v)\right)=d_{i}(\varepsilon(v)), \quad 0 \leq i \leq n,
$$

$v \in F\left(I_{n}\right)$. Define the categories $\dot{\mathscr{B}}_{n}$ and homomorphisms $\varepsilon: \dot{\mathscr{B}}_{n} \rightarrow \mathscr{E}_{n}$ and $d_{i}: \tilde{\mathscr{C}}_{n} \rightarrow \tilde{\mathscr{C}}_{n+1}, 0 \leq i \leq n$, as in Section 2 so that we have a commutative diagram

Now define subcategories \mathscr{K}_{n} of $\dot{\mathscr{C}}_{n}$ with $\mathrm{Ob}\left(\mathscr{X}_{n}\right)=\mathrm{Ob}\left(\overline{\mathscr{F}}_{n}\right)=F\left(I_{n}\right)$ inductively by:
(1) $a_{u, v, w}, c_{u, v}, e_{v}, i_{v}, \mathrm{id}_{v}$ are in \mathscr{K}_{n} for $u, v, w \in \operatorname{Ob}\left(\mathscr{E}_{n}\right)$,
(2) $t_{x, y}: d_{i}(u+v) \rightarrow d_{i}(u)+d_{i}(v)$ is in \mathscr{K}_{n+1} for $u, v \in \mathrm{Ob}\left(\dot{\delta}_{n}\right), 0 \leq i \leq n$,
(3) $\alpha: d_{i} d_{j}(v) \rightarrow d_{j+1} d_{i}(v)$ is in \mathscr{X}_{n+2} for $v \in \mathrm{Ob}\left(\tilde{q}_{n}\right), 0 \leq i \leq j \leq n$,
(4) $g \in \mathscr{K}_{n} \Rightarrow d_{0}(g), \ldots, d_{n}(g) \in \mathscr{K}_{n+1}$,
(5) $g, h \in \mathscr{K}_{n} \Rightarrow g+h,-h, g \circ h$ (if defined), $h^{-1} \in \mathscr{K}_{n}$.

Theorem 3.1. The categories $\mathscr{X}_{n}, n \geq 0$, are atomic.
Proof. To simplify the categories we proceed to $\dot{\mathscr{X}}_{n}=\mathscr{X}_{n} / \dot{\mathscr{X}}_{n}$ where the atomic subcategory $\mathscr{\mathscr { X }}_{n}$ of \mathscr{K}_{n} with $\operatorname{Ob}\left(\overline{\mathscr{X}}_{n}\right)=\mathrm{Ob}\left(\mathscr{X}_{n}\right)$ is defined by
(1) $a_{u, v, w}, e_{v}, f_{v}, \mathrm{id}_{v} \in \bar{X}_{n}$ for $u, v, w \in \mathrm{Ob}\left(\mathscr{X}_{n}\right)$,
(2) $g \in \overline{\mathscr{X}}_{n} \Rightarrow d_{0}(g), \ldots, d_{n}(g) \in \dot{\mathscr{X}}_{n+1}$,
(3) $g, h \in \overline{\mathscr{X}}_{n} \Rightarrow g+h,-h, g \circ h$ (if defined), $h^{-1} \in \overline{\mathscr{X}}_{n}$.
$\dot{\mathscr{X}}_{n}=\mathscr{X}_{n} / \mathscr{X}_{n}$ is a category with abelian group structure where the product is now strictly associative and unital. $\mathrm{Ob}\left(\dot{\mathscr{X}}_{n}\right)$ can be identified with $W_{n} \cup\left\{0_{n}\right\}$ where the sets $W_{n}, n \geq 0$, of words over the alphabet (3.3) are defined by:
(1) $I_{n} \subseteq W_{n},-0_{n} \in W_{n}, \boldsymbol{d}_{0}\left(0_{n}\right), \ldots, d_{n}\left(0_{n}\right) \in W_{n+1}$,
(2) $v \in W_{n} \Rightarrow d_{0}(v), \ldots, d_{n}(v) \in W_{n+1}$,
(3) $u, v \in W_{n} \Rightarrow u+v,-(v) \in W_{n}$.

The homomorphisms $\quad d_{i}: \mathscr{X}_{n} \rightarrow \mathscr{X}_{n+1}, \quad 0 \leq i \leq n$, induce homomorphisms $d_{i}: \dot{\mathscr{X}}_{n} \rightarrow \dot{\mathscr{X}}_{n+1}$ and the $\alpha_{i, j}$ of the original complex define natural transformations $\alpha_{i, j}: d_{i} d_{j} \rightarrow d_{j+1} d_{i}, i \leq j$, for the $d_{i}: \dot{\mathscr{X}}_{n} \rightarrow \dot{\mathscr{X}}_{n+1}$. Now let $\Delta_{n}, n \geq 0$, be the set of $\dot{\mathscr{K}}_{n}$-morphisms

$$
c_{u, v}, i_{v}, j_{v}, \varrho_{v}, k_{u, v}, \operatorname{id}_{v}
$$

$u, v \in \mathrm{Ob}\left(\dot{\mathscr{X}}_{n}\right)$ with the following restrictions:
(1) for $c_{u . v}, u, v$ are in $X_{n} \cup\left(-X_{n}\right), u \neq v, u \neq-v,-u \neq v$, where the sets X_{n} are the smallest subsets of $\mathrm{Ob}\left(\dot{\mathscr{X}}_{n}\right)$ such that $I_{n} \subseteq X_{n}$ and $v \in X_{n} \Rightarrow d_{0}(v), \ldots, d_{n}(v) \in X_{n-1}$,
(2) for $k_{u, \iota}, u, v$ are not equal to 0 .

Next define the subsets $\tilde{\Delta}_{n}$ of $\operatorname{Mor}\left(\dot{\mathscr{M}}_{n}\right)$ inductively by:
(1) $t: d_{i}(u+v) \rightarrow d_{i}(u)+d_{i}(v), \lambda: d_{i}(0) \rightarrow 0$, and $\kappa: d_{i}(-v) \rightarrow-d_{i}(v)$ are in $\tilde{\Delta}_{n+1}$ for $u, v \in \operatorname{Ob}\left(\dot{x}_{n}\right), 0 \leq i \leq n$, where $u, v \neq 0$ for $t_{u, v}$,
(2) $\alpha: d_{i} d_{j}(v) \rightarrow d_{j+1} d_{i}(v)$ is in $\bar{\Delta}_{n+2}$ for $u, v \in \mathrm{Ob}\left(\dot{\mathscr{H}}_{n}\right), i \leq j$,
(3) $g \in \tilde{\Delta_{n}}=d_{0}(g), \ldots, d_{n}(g) \in \tilde{J}_{n+1}$.

Note that $\tilde{\Delta}_{0}$ is empty. Let

$$
T_{n}=\Delta_{n} \cup \bar{U}_{n}, \quad n \geq 0 .
$$

and define $E\left(T_{n}\right)$ and $E\left(T_{n}^{-1}\right)$ as in (2.5). Then every $\dot{\mathscr{X}}_{n}$-morphism is a composition of elements of $E\left(T_{n}\right) \cup E\left(T_{n}^{-1}\right)$. This can be seen by the same method as before. Now define maps

$$
r g_{n}: \mathrm{Ob}\left(\dot{\mathscr{K}}_{n}\right) \rightarrow \mathbb{N}
$$

with the properties (2.6)-(2.8). Concerning (2.8), the only new diagram is (3.2); all other diagrams have already been considered in [10]. Then the same induction method clearly yields $h=$ id for all automorphisms in $\dot{\mathscr{X}}_{n}$.

From the semisimplicial complex (3.1) we can form a complex (2.1) defining $\partial: \mathscr{C}_{n} \rightarrow \mathscr{C}_{n+1}$ by the usual formula

$$
\partial(P)=\left(\cdots\left(\left(d_{0}(P)+\left(-d_{1}(P)\right)\right)+d_{2}(P)\right)+\cdots\right)+\left(\pm d_{n}(P)\right) .
$$

The natural transformations $\chi: \partial^{2} \rightarrow 0$ can be constructed from the $\alpha_{i, j}$ and clearly the commutativity conditions will be satisfied by Theorem 3.1. Observe that the same construction for the $d_{i}: \tilde{B}_{n} \rightarrow \dot{B}_{n+1}$ defined above yields a complex

$$
\begin{equation*}
\cdots \longrightarrow \tilde{E}_{n-1} \xrightarrow{\partial} \tilde{E}_{n} \xrightarrow{\partial} \tilde{\mathscr{F}}_{n+1} \longrightarrow \cdots \tag{3.4}
\end{equation*}
$$

and a commutative diagram (2.4). Assuming then that the $\varepsilon: \tilde{F}_{n} \rightarrow \mathscr{B}_{n}$ are equivalences, the derived cohomology sequences are isomorphic. Furthermore, it is now possible by Theorem 3.1 to define $\dot{\mathscr{B}}_{n}=\dot{\mathscr{B}}_{n} / \mathscr{K}_{n}$. Then we get the semisimplicial complex

$$
\dot{\mathscr{B}}_{0} \longrightarrow \dot{\mathscr{B}}_{1} \Longrightarrow \dot{\mathscr{B}}_{2} \Longrightarrow \cdots
$$

with $d_{i} d_{j}$ equal to $d_{j+1} d_{i}, i \leq j$, since the $\alpha_{i, j}$ are in \mathscr{X}_{n}. The derived cohomology sequence is then isomorphic to that of (3.4) via the projections $\pi: \overline{\mathscr{F}}_{n} \rightarrow \dot{\mathscr{B}}_{n}$.

References

[1] S.U. Chase, Abelian extensions and a cohomology theory by Harrison, in: S. Eilenberg et al., Eds., Proc. Conf. Categorical Algebra (Springer, Berlin, 1966) 375-403.
[2] A. Hattori, On groups $: \mathrm{H}^{n}(S / R)$ related to the Amitsur cohomology and the Brauer group of commutative rings, Osaka J. Math. 16 (1979) 375-382.
[3] A. Hattori, Some arithmetical applications of groups $\mathrm{in}^{q}(R, G)$, Tòhoku Math. J. 33 (1981) 35-64.
[4] A. Hattori, On Amitsur cohomology of rings of algebraic integers, Hokkaido Math. J. 10 (I981) 46-56.
[5] S. MacLane, Group extensions by primary abelian groups, Trans. Amer. Math. Soc. 95 (1960) 1-16.
[6] S. MacLane, Homology (Springer, Berlin, 1967).
[7] M. Takeuchi, On Villamayor and Zelinsky's Long Exact Sequence, Memoirs AMS No. 249 (Sept. 1981).
[8] M. Takeuchi, The mapping cone method and the Hattori-Villamayor-Zelinsky sequences, J. Math. Soc. Japan, to appear.
[9] K.-H. Ulbrich, An abstract version of the Hattori-Villamayor-Zelinsky sequences, Sci. Pap. Coll. Gen. Ed., Univ. Tokyo 29 (1979) 125-137.
[10] K.-H. Ulbrich, Kohärenz in Kategorien mit Gruppenstruktur, I, J. Algebra 72 (1981) 279-295; II, J. Algebra, to appear.
[11] O.E. Villamayor and D. Zelinsky, Brauer groups and Amitsur cohomology for general commutative ring extensions, J. Pure Appl. Algebra 10 (1977) 19-55.

